Determinant Preserving Maps: an Infinite Dimensional Version of a Theorem of Frobenius
نویسنده
چکیده
In this paper we investigate the structure of maps on classes of Hilbert space operators leaving the determinant of linear combinations invariant. Our main result is an infinite dimensional version of the famous theorem of Frobenius about determinant preserving linear maps on matrix algebras. In that theorem of ours, we use the notion of (Fredholm) determinant of bounded Hilbert space operators which differ from the identity by an element of the trace class. The other result of the paper describes the structure of those transformations on sets of positive semidefinite matrices which preserve the determinant of linear combinations with fixed coefficients. The determinant of square matrices (or linear operators on a finite dimensional vector space) is one of the most basic notions in matrix theory which has several applications also in other areas of mathematics. In light of its fundamental role, it is not surprising that maps on sets of matrices preserving related quantities have been extensively studied in the field of preserver problems. Indeed, the statement which is generally regarded as the first result in that branch of mathematics also concerns such transformations. It is the famous theorem of Frobenius from 1897 which reads as follows. In this paper, for a positive integer n and a field F , the space of all n× n matrices with entries in F is denoted by Mn(F ) and t stands for the transpose. 2010 Mathematics Subject Classification. Primary: 47B49. Secondary: 47B10, 15B48.
منابع مشابه
Additive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملExistence of Invariant Manifolds for Stochastic Equations in Infinite Dimension
We provide a Frobenius type existence result for finite-dimensional invariant submanifolds for stochastic equations in infinite dimension, in the spirit of Da Prato and Zabczyk [5]. We recapture and make use of the convenient calculus on Fréchet spaces, as developed by Kriegl and Michor [16]. Our main result is a weak version of the Frobenius theorem on Fréchet spaces. As an application we char...
متن کاملFrobenius kernel and Wedderburn's little theorem
We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کامل